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which have to be carried out for each value of z.
The necessary ranges of  and y must be considered
and also the interval in these coordinates at which the
summation is to be done. In the earlier papers the
rule suggested for the choice of interval was that if
H and K are sufficiently small they should be
multiplied by factors to bring the product as near as
possible to 20. This factor can then be regarded as
multiplying 0, the interval of subdivision, and brings
the latter up to a suitable value. The range of the
strips is, of course, correspondingly increased. If H
or K is less than 20 the strips need only to be added
on the even sides, but if the maximum index H or K
is greater than 20 then both even and odd sides
should be added. In all such summations care must
be taken to allow for the case where the number of
A(hk)’s or B(hk)’s is reduced when =0 or k= 0
(see the Introduction to Lonsdale, 1936).

The 3° strips are also of considerable value in the
calculation of structure factors, especially in the earlier
stages of an analysis. In these stages it is convenient
to keep the atoms to within 60ths or 120ths, when the
strips can be used directly to give the values of the
sums of terms like 2% 27k . ©O8 2nky. A strip can

sin sin ~
be selected to give first of all the values of cos 2nhx
or sin 2zhxz, and these values can be used as the
amplitudes of a cos 2xky or sin 2zky strip, which
will give the answer for successive values of k. The
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strips for the various atoms can be laid beneath each
other for convenience in adding. The accuracy obtain-
able by thus ‘forcing’ the atoms on to the nearest
6° or 3° is limited, and more accurate procedures are
discussed by Sayre (1951) and by Beevers & Lipson
(1952).

The calculation of molecular transforms also has its
value in crystal-structure work, and this application
of the strips has been described by Whittaker (1948).

T am indebted to the X-ray Analysis Group of the
Institute of Physics for encouragement in starting this
work and for some financial assistance, to Dr T. H.
Goodwin for the supply of the cross-totals of the strips,
and to my wife for much assistance in the work of
cutting.
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The Use of Fourier Strips for Calculating Structure Factors
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A method is described for using Fourier strips directly for the caleculation of structure factors.
The accuracy of the method is discussed, and some examples are given of the procedure involved.

1. Introduction

Much more attention seems to have been paid to the
systematic calculation of electron densities in crystals
than to the calculation of structure factors; the former
operation is more easily dealt with, since it is concerned
with precisely located points in the unit cell, whereas
structure factors depend upon arbitrary positions.
Nevertheless, when methods of evaluating electron
densities had been satisfactorily worked out, the
similarity of the electron-density equation

oz, y,2) = }172' > 2 F(hkl) exp [—2mi(ha+ky+iz)]
B k1

and the structure-factor equation
F(hkl) = 3 f, exp [2mi(ha,+ky,+1z,)]

suggested to several workers (e.g. Robertson, 1936;
Sayre, 1951) that these methods could be used for
both operations.

There are, however, some difficulties associated with
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both these methods: Robertson’s requires the pre-
paration of ‘sorting boards’ for different atomic
parameters, and Sayre’s requires the careful pre-
paration of an electron-density map representing the
assumed structure. The present paper describes a more
straightforward method, which can be put into
operation by anyone who possesses a set of 3° Fourier
strips.

2. General principles

In a sense, the method can be -regarded as similar to
that of Sayre (1951), who makes use of the fact that
the weighted reciprocal lattice is the Fourier transform
of the electron density in the crystal. This method can
be used directly if we are prepared to place all the
atoms on points whose coordinates are exact {};ths
of the unit cell, that is, with errors of the order of
53y of the unit-cell edge. This is unsatisfactory for
large unit cells, of the order of, say, 24 A, since the
errors in placing the atoms would be about 0-1 A,
although this would certainly be accurate enough for
the initial stages of a structure determination; but
for cell edges of the order of 6 A the error in the
positions of the atoms would be of the order of 0-02 A,
which is almost negligible. The present proposal,
therefore, is to confine the use of the strips to the
shorter axis only, so that only the smaller errors are
introduced.

The principle can be best explained in terms of the
structure-factor equation

F(hk0) = 3 f, cos 27thx,, cos 2ntky, ,

which arises in many space groups. If all the atoms
are similar, this may be written as

F(hk0) = f, 3 cos 27thx, cos 2mky, .

Suppose that the unit cell has a long & cell
dimension. Then the quantities cos 27ky, may be
evaluated from tables, with any accuracy desired,
for each atom and for each value of k. These quantities
may then be used as amplitudes in the appropriate
Fourijer strips, the summation being effected in the
usual way by placing the strips under each other and
adding; successive columns give a row of structure
factors with constant k£ and increasing 4. The following
are the rules of operation:

1. The amplitude of the strip is cos 2zky.

2. The index is the coordinate of the atom as an
exact number of ;i;ths.

3. Each column of the strip gives the contribution
of the atom to successive structure factors.

The values of X cos2mhx, cos 2nky, may then be

n
multiplied by the appropriate values of scattering
factor to give the structure factors required. Even if
the atoms are not all similar, the derivation of the
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quantities cos 27hx cos 27ky in this way is extremely
helpful.

3. Improvement of the accuracy

For some purposes the accuracy of the method is
insufficient, for the error in cos 27zhx due to an error
oz is equal to —27:hdx sin 27thx, and so will tend to
increase as kb increases. The maximum error is 27hdz,
and since dxr may be as great as 514, this maximum
error is of the order of A/40, so that errors up to
209, will occur for indices of 8.

This accuracy may be considerably improved by a
simple expedient, at the expense of doubling the
computational work: if a parameter lies between two
exact tlyths, the weighted mean of these two is
taken. Thus if the parameter is p/120, where p is not
integral, it is expressed as

p= 7, (p+n,) +0a(P—ny)
7y

>

where p+n, and p—n, are integral and n,4n, = 1.
Thus instead of one strip, two adjacent strips, of
amplitude {n,/(n,+ny)} cos 2nky and {n,/(n,+n,)}
cos 27tky, and of indices p+n, and p—n, respectively,
are chosen.

The error is obviously a maximum if »;, = n,, when
it can be shown that the accuracy depends upon the
degree to which cos {27hn,/120} = 1. Thus up to
h = 6 the maximum error is only 1% and up to
h = 12 it is only 59%. If errors of this amount (which
is probably equal to that with which the scattering
factors of the various atoms are known) can be
tolerated, then it may be worth while using the strips
so that they correspond to the larger range of index;
if they correspond to the smaller range, only a few
columns of the strips are used and the extraction and
replacement of the strips may take more time than
the additions.

4. Modification for parameters greater than 0-25

The 3° strips prepared by Beevers (1952) include
indices only up to 30, which corresponds to a para-
meter of 0-25. If a parameter lies between 0-25 and
0-50, however, the strips can be used quite simply;
in place of index p, the index 60—p is chosen; the
even places on the strip (on the obverse side) then
give the values required, and for cosine summations
the odd places (on the reverse side) give the negatives
of the values required. Parameters lying between
0-50 and 1-00 may be expressed as negative quantities

Table 1. Extension of the strips to cover the whole unit cell
P 60—p p—60 120—p

Even places + + + -+
Cos { Odd places —+ — - -

Sin Even places + — + -
Odd places + + — —
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Table 3. Example of structure-factor calculation

020 220 420 620 820
83 CE 15 8 0 83 0 83
62 CE 17 62 13 57 36 4l
62 CE 4 62 57 41 19 6
_ 83 70 8T 17 130
92 CE 13 92 19 84 54 B2
Sum 9 8 97 71 68
Table 4.

020 220 420 620 820

63 CE 15 63 0 63 0 63
20 CE 14 20 2 20 6 18
59 CE 17 59 12 54 35 39
83 CE 18 3 1 2z 2 1
37 CE 4 37 34 35 11 4
25 CE 3 25 24 20 15 8
83 69 184 5 117

52 CE 13 52 11 48 31 35
41 CE 14 I 4 40 183 37
93 15 88 44 T2

Sum 10 84 96 49 45

and so brought also within the range of the procedure.
For sine summations the changes of sign are different,
and the various cases are given in Table 1.

The function cos 27(hx—+ky) is most conveniently
dealt with by expansion into the form cos 2nhx
cos 2tky —sin 2nhx sin 27ky. This does not double
the work, because the structure factors hk0 and Ak0
can be derived from the same calculations.

5. Examples

A simple example is given to show the method of
calculation. Consider a crystal with plane group pmm
having atoms with the parameters shown in Table 2.

Table 2. Assumed parameters in decimals and in 1ths

Decimals 1ogths cos 2nky
x 0-123 14-76 —
% 0-047 — 0-831
%, 0-142 17-04 —
Y 0-428 — 0-618
Xy 0-030 3-60 —
Ys 0-322 — —0-618
@, 0-388 46-56 —
s 0-220 — —0925

Lists of the values of cos 2nky may be made; the
values for &k = 2 are given in Table 2.

The summations for the £20 reflexions up to A = 9
are shown in Table 3.

The weighting procedure can be demonstrated by
the same example (Table 4).

120 320 520 720 920
83 CO 15 59 59 59 59 59
62 CO 17 39 5 16 62 10
62 CO 4 61 50 31 6 19
. 37 164 106 115 68
92 CcO 13 T 42 89 5 91

Difference 108 206 195 120 139

Example of improved accuracy

120 320 520 720 920
63 CO 15 45 45 45 45 45
20 CO 14 15 12 17 8 19
59 CO 17 37 53 15 59 9
3CO 18 2 3 0 3 2
37 CO 4 36 30 I8 4 11
25 CO 3 35 22 18 11 E
38 165 113 100 60

52 CO 13 0 24 5 3 51
41 CO 14 30 24 36 17 39
70 48 86 20 90

Difference 108 213 199 120 150

The accuracy of the two procedures is shown by
the comparison of the two sets of results with the
values obtained by ordinary calculation to three
decimal places (Table 5).

It will be seen that, while the first method gives
results which are useful for preliminary work only,
the second gives results that are, over the range of

Table 5. Comparison of values of X cos 2mhx cos 2mky
obtained by three different methods

First Second Accurate
hkl method method calculation
020 —0-09 —0-10 —0-09
120 1-08 1-08 1-08
220 —0-89 —0-84 —0-84
320 —2-06 —-2-13 —2-11
420 —0-97 —0-96 —0-97
520 1-95 —1-99 —2-00
620 0-71 0-49 ‘0-48
720 1-20 1-20 1-19
820 0-68 0-45 0-46
920 1-59 1-50 1-53

calculation, of quite adequate accuracy. Since the
methods reduce the calculations to the simple
selection and addition of strips, they should speed the
work of calculation considerably.
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